Results of the 2022 Colorado Statewide Seat-Belt Study

Prepared for the
Colorado Department of Transportation

August 1, 2022

COLORADO
Department of Transportation

TABLE OF CONTENTS

List of Tables 3
List of Appendices 4
Executive Summary 5
Survey Design and Methodology 7
Results 8
Conclusions 15
Appendices 16

LIST OF TABLES

Table		Page
1.0	Statewide Seat-belt Usage by Vehicle Type........................	6
2.0	Historical Statewide Usage Rate (\%)	8
3.0	Statewide Results Compared to 2022 Premobilization Study.......	9
4.0	Increases in Seat-Belt Usage in Past Nine Years (\%).................	10
5.0	Statewide Passenger Usage Rate by Vehicle Type...................	10
6.0	Statewide Seat-belt Usage by Vehicle Speed........................	11
7.0	Statewide Seat-belt Usage by Road class.............................	12
8.0	Statewide Seat-belt Usage by County................................	13
9.0	County Comparisons by Population Size..........................	14

LIST OF APPENDICES

Appendix Page
1 Statewide Seat-belt Usage by County in Alphabetical16Order
2 Number of Segments Selected (n) by County and MTFCC 17
3 Weights for the Colorado State Seatbelt Usage 18 Observational Survey
4 Weights for the Colorado State Seat-belt Usage 20 Observational Survey by Survey Site
5 Training Syllabus 38
6 Colorado Average Motor Crash-Related Fatalities by 39 County 2015-2019
7 Codes by Road Segment File 41

EXECUTIVE SUMMARY

Colorado Department of Transportation (CDOT) contracted with Atélior, LLC to conduct a comprehensive state of seat belt usage in June 2022. This report highlights the findings of this study.

Atélior Research Team:

D. Todd Donavan, PhD	Principle Investigator
Jon Schroth	Project Coordinator
Tom Petersen	Administration /Oversight
Richard Motzkus	Field Administration
Todd Tuell	Lead Statistician

Atélior hires retired Colorado State Highway Patrol Officers to serve as observers. This benefits the project as these individuals have a keen understanding of safety procedures and are familiar with the interstate, state highway, local and country roads. Additionally, many of these individuals have worked on this study for several years so they have a wealth of knowledge to apply to the work. Their experience both in their past profession and in this study strengthens the reliability and validity of our results.

To assure the results are at the highest standards of reliability and validity, Atélior retrains the observers on the proper procedures of observation and recording each year. Additionally, observers are evaluated in the field to assure their accuracy. This is the third year of using IPads for data collection which enhances the validity of the data.

A total of 744 sites were surveyed, with a total of 99,476 vehicles surveyed during the study. The observers documented 120,758 occupants of the vehicles which include both driver and front seat passengers. The results are organized across five vehicle categories of cars, vans, sports utility vehicles (SUVs), pickup trucks, and commercial vehicles (10,000 pounds or less). This is the first year of five to utilize new site locations. Observations involved 26 counties across the state of Colorado. The results demonstrate an overall seat belt usage rate of 87% across the five vehicle categories.

A Dohblrame

D. Todd Donavan, PhD
Principle Investigator, Atélior

Seatbelt Usage Across the Five Vehicle Categories

The 2022 Colorado Statewide seat-belt survey is provided in Table 1.0 below. The five vehicle categories from highest to lowest in seat-belt usage are as follows: SUVs 90.3% (C.I. 89.0% to 91.5%), Vans 89.0% (C.I. 86.5% to 91.5%), Cars 87.6% (C.I. 86.0% to 89.1%), Commercial Vehicles 79.2% (C.I. 76.2% to 82.3\%), and Trucks 78.5\% (C.I. 76.7\% to 80.4\%).

The overall rate across all vehicle types stands at 87.0% (C.I. 85.8% to 88.2%). The confidence interval (C.I.) indicates that we are 95% confident that the overall rate, if we took a large number of samples, would be between 85.8% and 88.2%. The confidence interval compares nicely with last year's statewide study. Last year's confidence stood at 85.4% to 87.7%, hence both the upper and lower bounds of the confidence interval moved slightly upward.

Table 1.0
2022 Statewide Seat-belt Usage by Vehicle Type

	\# of Sites	Estimate \%	Std Error	CV \%	Lower $\mathbf{9 5 \%}$ Limit	Upper $\mathbf{9 5 \%}$ Limit
Cars	744	87.6	0.8	0.90	86.0	89.1
Vans	744	89.0	1.3	1.44	86.5	91.5
SUVs	744	90.3	0.6	0.71	89.0	91.5
Trucks	744	78.5	0.9	1.19	76.7	80.4
Commercial	744	79.2	1.6	1.96	76.2	82.3
Overall	744	87.0	0.6	0.70	85.8	88.2

Statewide Seatbelt Survey

Sampling Methodology

There were 744 statewide sites chosen from 26 counties for the seat belt survey with 738 original sites and 6 alternate sites providing survey data for this study performed during a 2 -week period in June 2022 . In selecting the sample, stratification by county was employed as well as an unequal weighting by road class. Each county had either 12 or 48 sites chosen for observations.
*11 of the 744 Statewide survey sites produced ZERO observations.

Analysis Methodology

Driver and passenger observation data was combined with site characteristic data to create the input data file. Sampling weights were derived and utilized in the analysis.

The R Survey package was utilized to analyze the observation data. The overall usage estimate (percentage) and usage estimates by vehicle type were calculated using the svyratio function. For the usage estimates by the various domains (vehicle speed, road class, and county) the svyby function was used. Both the svyratio and svyby functions take into account the design used in selecting the sample. The cv and coef functions were employed to calculate the coefficients of variation and 95% confidence interval limits for the estimates.

Sample Characteristics

- $\quad 744$ of 744 sites surveyed.
- 99,476 vehicles were surveyed
- 120,758 occupants (both drivers and front seat passengers) were surveyed
- 3,125 occupants were surveyed as "unable to be observed" $(2,890$ of these were drivers)
- This represents 2.6% of all individuals surveyed (observable + non-observable)
- Non-observable rates by vehicle type

Vehicle Type	$\mathbf{2 0 2 2}$	$\mathbf{2 0 2 1}$	$\mathbf{2 0 2 0}$
Car	2.5%	2.1%	2.8%
Van	1.3%	0.8%	1.1%
SUV	4.1%	2.2%	2.3%
Truck	2.1%	2.1%	4.9%
Commercial	2.1%	2.1%	2.0%
Overall	2.6%	2.0%	2.9%

RESULTS

Statewide Survey Results

We found consistent results in the 2022 statewide survey compared to the 2021 study. In 2021, we found an overall rate of 86.6% with an overall rate of 87.0% in 2022 . This demonstrates a modest increase of $.4 \%$ and a percentage increase of $.46 \%$ (($87.0-86.6) / 86.6)$. The 2022 rate of 87.0% is in line with the five-year moving average of 86.9%. This compares nicely to the previous five years, 2013 to 2017, when the seat belt usage rate averaged 83.5%. The current rate of 87.0% represents a 4.2% increase over the 2013 to 2017 time period.

There were some changes in the vehicle categories, most notably, Trucks dropped from 88.1% in 2021 to 78.5% in 2022. We found a Trucks rate of 80.5% in this year's pre-mobilization study. Hence, the 78.5% rate is in line with recent observations. Additionally, as Table 2.0 demonstrates, the current Trucks rate is more in line with previous studies from 2018 to 2020 when Trucks averaged 80.33\% over that three-year period.

The other vehicle categories exhibit minor changes as follows: Cars increased by .6 for a percentage increase of $.69 \%$, Vans increased by .9 with a percentage increase of 1.0%, SUVs increased by 4.4 (5 percent increase), and Commercial Vehicles increased by 3.0 (3.9 percent increase).

Table 2.0
Historical Statewide Usage Rates (\%)

	$\mathbf{2 0 1 3}$	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	$\mathbf{2 0 1 9}$	$\mathbf{2 0 2 0}$	$\mathbf{2 0 2 1}$	$\mathbf{2 0 2 2}$
Car	82.6	83.1	85.2	83.9	83.7	86.0	88.3	86.1	87.0	87.6
Van	86.9	87.3	89.2	89.5	87.2	88.0	90.1	90.2	88.1	89.0
SUV	86.7	87.1	89.9	89.2	88.5	90.8	92.0	90.9	85.9	90.3
Truck	73.0	72.4	77.6	76.1	76.5	80.1	82.6	78.3	88.1	78.5
Commercial	65.5	67.5	73.9	68.2	70.8	74.7	75.8	74.8	76.2	79.2
Total	82.1	82.4	85.2	84.0	83.8	86.3	88.3	86.3	86.6	87.0

Comparing Statewide and Premobilization Results

This overall Statewide usage rate is slightly above the usage rate found in May during our premobilization study. The overall premobilization rate stood at 86.4% (C.I. $\% 84.2 \%$ to 88.7%), with the Statewide standing at 87% (C.I. 85.8% to 88.2%). Two categories decreased in the Statewide study from the premobilization: Trucks dropped by 2.0% to 78.5% and commercial vehicles dropped by 4.6% to land at 79.2%. The other three categories increased since the premobilization study: Cars increased by 1.5%, Vans increased by 7.4%, and SUVs increased slightly by $.6 \%$. Overall, there is a small increase in seat belt usage since the premobilization study in May.

While we only find a small increase over the premobilization numbers, we should consider the long-term impact of running the "Click-It-Or-Ticket" campaign. Research demonstrates that the long-term effect of exposure to campaigns has a positive impact on occupant's behavior. That is, occupants are more likely to wear their seat belts because they were exposed to a "reminding" campaign over and over again in previous years.

Table 3.0
Seat Belt Usage Comparison Between 2022
Premobilization and Statewide Study

Vehicle Type	Premobilization Results	Statewide Results	Change	$\%$ Change
Car	86.1%	87.6%	1.5%	1.7%
Van	81.6%	89.0%	7.4%	9%
SUV	89.7%	90.3%	$.6 \%$	$.67 \%$
Truck	80.5%	78.5%	-2.0%	-2.5%
Commercial	83.8%	79.2%	-4.6%	-5.5%
Overall	86.4%	87.0%	$.6 \%$	$.69 \%$

Seat-belt Usage Since 2013

Table 4.0 captures the absolute increases in each vehicle category as well as the percentage increase since 2013. All five vehicle categories increased over the past nine years. The highest increases came in Commercial Vehicles (13.7% increase) and a percentage increase since 2013 of 21.0%. Trucks increased by 5.5% for a percentage increase of 7.5% over the last nine years. Overall, seat-belt usage increased across all five vehicle categories by 4.9% since 2013.

Table 4.0
Increases in Seat-belt Usage in Past Nine Years (\%)

Vehicle Type	Absolute Increase	Percentage Increase (2013 to 2022)
Car	5.0	6.0%
Van	2.1	2.4%
SUV	3.6	4.2%
Truck	5.5	7.5%
Commercial	13.7	21.0%
Overall	4.9	5.97%

Seat-belt Usage by Passengers

For the past two years, we've presented the data on front-seat passenger seat belt usage. Table 5.0 below demonstrates a slight increase in front-seat passenger usage over the 2021 data. Overall, passengers wore their seat belts 87.57% of the time in 2021 and 89.72% in 2022 . This represents an increase of 2.15 and a percentage increase of 2.45%, ($(89.72-87.57) / 87.57)$. The Trucks category was the only category where the rate of seat belt usage dropped for passengers in 2022. Truck passengers dropped from 88.41% to 82.05% in 2022, a drop of 6.36 (7.1 percentage decrease).

Table 5.0
Statewide Passenger Usage Rate by Vehicle Type

Vehicle		
Type	2021	2022
Car	85.56	88.20
Van	93.13	99.17
SUV	88.38	92.88
Truck	88.41	82.05
Commercial	72.33	74.64
Overall	87.57%	89.72%

Seat-belt Usage and Speed

Atélior analyzed the seat belt usage rate based on the speed of vehicles traveling. The actual speed of each vehicle is not captured. However, observers document the speed limit within the area observed. Table 6.0 presents the data of the three categories of 0-30,31-50, and Greater than 50 miles per hour. As found in previous studies, seat belts are more likely to be worn when driving at higher speeds. Seat belt usage was the highest among vehicles traveling above 50 mph . The estimated seat belt usage for vehicles driving above 50 stood at 90.7% (C.I. 89.4% to 91.9%). As vehicles travel in lower speed limit areas, seat-belt usage declined. Occupants driving $31-50 \mathrm{mph}$ wore seat belts 86.7% of the time, (C.I. 84.5% to 88.8%), followed by the vehicles traveling $0-30 \mathrm{mph}$ with a rate of 84.2% (C.I. 81.8% to 86.6%).

The usage rates remained fairly constant across the three-speed ranges compared to last year's scores. The $0-30$ $m p h$ category improved by .1 for a $.11 \%$ increase. The $31-50 \mathrm{mph}$ category dropped by .1 , a percentage drop of $.12 \%$, and the seat belt rate in the Greater than 50 mph category increased by .7 for a 7.7% increase.

Table 6.0
Statewide Seat-belt Usage by Vehicle Speed

	\# of Sites	Estimate \%	Std Error	CV \%	Lower $\mathbf{9 5 \%}$ Limit	Upper $\mathbf{9 5 \%}$ Limit
$0-30 \mathrm{mph}$	214	84.2	1.2	1.46	81.8	86.6
$31-50 \mathrm{mph}$	241	86.7	1.1	1.28	84.5	88.8
> than 50 mph	289	90.7	0.6	0.70	89.4	91.9

Seat-belt Usage and Road Class

In this study, we also analyzed the seat belt usage rate based on Road Class. We have three different road classes of interest: Primary, Secondary, and Local. Primary roads typically have more lanes and higher speeds are allowed. Secondary roads fall between Primary and Local roads according to speed, access and number of lanes. Finally, Local roads are neighborhood streets used for short trips and involve lower speeds.

Table 7.0 below presents the seat-belt usage rate based on these three Road Classes. The seat-belt usage rate is the highest on primary roads followed by secondary and local roads. This difference may be associated with the differences in speeds associated with the three categories. As discussed in Table 6.0 above, drivers/passengers are more likely to wear a seat belt when moving at higher speeds. One primary difference in these three road classes is the posted speed limits, primary being the highest allowed speed, followed by secondary and local roads respectively.

Seat-belt usage on primary roads did not change from the rate in 2021; both standing at 92.6%, although the confidence interval did tighten up a bit. In 2021 the C.I. stood at (90.7% to 94.4%) while the confidence interval for 2022 stands at (91.2% to 94.1%). This tighter confidence interval gives us more precision to know the exact amount of drivers/passengers using their seat belts. Secondary roads demonstrated a significant increase in seat belt usage since 2021. This year's rate of 88.5% is an increase of 3% for a percentage increase of $3.5 \%((88.5-85) / 85)$. The local roads found a small decrease in seat belt use since 2021, as it dropped from 86.4% to $85.6 \%, .8$ or a percentage decrease of $.9 \%$.

Table 7.0
Statewide Seat-belt Usage by Road Class

	\# of Sites	Estimate \%	Std Error	CV \%	Lower $\mathbf{9 5 \%}$ Limit	Upper $\mathbf{9 5 \%}$ Limit
Primary	89	92.6	0.8	0.81	91.2	94.1
Secondary	398	88.5	0.5	0.53	87.6	89.4
Local	257	85.6	0.9	1.05	83.9	87.4

Seat-belt Usage by County

Table 8.0 illustrates the seat belt estimates by Colorado Counties. This table is organized from highest to lowest percentage. (Note: Appendix 1 presents this same table with the counties in alphabetical order). In this year's study, eleven counties exhibited a usage rate above 90%. In 2021, only nine counties were at 90% or above. Further, two years ago in 2020, only six counties were above 90%. Consequently, in the past three years, a significant number of counties have increased their usage rate to a 90% threshold. We find twelve counties between 80% and 90%, and only three counties below the 80% range. The three counties that stand below the 80% mark are Fremont, Chaffee, and Pueblo.

Table 8.0
Statewide Seat-belt Usage by County

	$\begin{aligned} & \hline \# \text { of } \\ & \text { Sites } \end{aligned}$	Estimate \%	Std Error	CV \%	$\begin{gathered} \hline \text { Lower } \\ \text { 95\% } \\ \text { Limit } \end{gathered}$	$\begin{aligned} & \text { Upper } \\ & \text { 95\% } \\ & \text { Limit } \end{aligned}$
GRAND	12	96.3	0.8	0.87	94.7	97.9
GARFIELD	12	96	1	1.04	94	98
ARAPAHOE	48	93.8	1.4	1.51	91	96.6
DENVER	48	93.6	1.6	1.75	90.4	96.8
EAGLE	12	93.6	0.7	0.78	92.2	95
BOULDER	48	92.9	1.2	1.32	90.5	95.3
MORGAN	12	92.9	2	2.19	88.9	96.9
MESA	48	92.1	1.2	1.36	89.7	94.6
LOGAN	12	91.1	4.2	4.59	82.9	99.3
COSTILLA	12	90.9	1.4	1.57	88.1	93.7
ADAMS	48	90.1	2.2	2.4	85.9	94.3
OTERO	12	89.3	0.9	1.03	87.5	91.1
PARK	48	88.6	1.5	1.65	85.8	91.5
LARIMER	48	88	0.9	1.05	86.2	89.8
LAS ANIMAS	12	87.8	3.2	3.65	81.5	94.1
MONTROSE	12	87.8	2.5	2.87	82.9	92.8
LA PLATA	12	87.7	1	1.16	85.7	89.7
DELTA	12	87.6	1.8	2.08	84	91.2
DOUGLAS	48	87.2	3.1	3.6	81	93.3
EL PASO	48	86.7	1.5	1.73	83.8	89.6
MONTEZUMA	12	86.1	1.7	1.92	82.9	89.4
JEFFERSON	48	80.8	0.8	1.01	79.2	82.4
WELD	48	80.1	2.4	2.96	75.4	84.7
FREMONT	12	78.1	3.1	4.01	71.9	84.2
CHAFFEE	12	69.2	1.5	2.17	66.2	72.1
PUEBLO	48	67.6	2.7	3.99	62.3	72.9

County Comparison of Top Ten versus Bottom Ten Counties

Table 9.0 below further evaluates the usage rate by counties. The table lists the top ten and bottom ten counties by seat-belt usage, as well as the county population and population per square mile. Conventional wisdom suggests that less populated areas are less likely to wear seat belts. The data in this table supports this argument.

While the average population of the top ten counties is smaller than the average population of the bottom ten counties, (AVG population of Top ten counties $=202,831$, AVG population of bottom ten counties $=229,734$), we must also consider the population per square mile. The bottom ten counties tend to be much larger in square miles. The bottom ten counties have an average of 169 more square miles per county than the top ten counties. The average population of the top ten counties per square mile stands at 601 while the population per square mile of the bottom ten counties stands at 177 . Hence, the rural nature of the bottom ten counties may be leading to a lower seat belt usage rate.

County Comparisons of Top Ten and Bottom Ten Counties

Table 9.0
County Comparisons by Population Size

Ranking	County	Usage Rate	Population	County Size (Square miles)	Population per Square Mile
Highest Rated Counties by Seat-belt Usage					
1	Grand	96.3	15,536	1,846	8
2	Garfield	96	59,605	2,958	20
3	Arapahoe	93.8	649,980	804	808
4	Denver	93.6	715,878	155	4,619
5	Eagle	93.6	54,960	1,685	33
6	Boulder	92.9	324,682	740	439
7	Morgan	92.9	28,617	1,294	22
8	Mesa	92.1	152,962	3,329	46
9	Logan	91.1	22,282	1,839	12
10	Costilla	90.9	3,810	1,227	3
		Avg Usage rate 93.32\%	Average Population 202,831		AVG Pop / Square Mile 601
Lowest Rated Counties by Seat-belt Usage					
17	La Plata	87.7	56,138	1,692	33
18	Delta	87.6	30,758	1,142	27
19	Douglas	87.2	344,280	842	409
20	El Paso	86.7	710,499	2,127	334
21	Montezuma	86.1	26,266	2,036	13
22	Jefferson	80.8	578,795	773	749
23	Weld	80.1	315,389	4,014	79
24	Fremont	78.1	47,725	1,533	31
25	Chaffee	69.2	19,977	1,014	20
26	Pueblo	67.6	167,412	2,397	70
		Avg Usage rate 81.11%	Average Population 229,724		AVG Pop / Square Mile 177

CONCLUSIONS

Atélior, LLC conducted the 2022 Statewide seat belt study between June $12^{\text {th }}$ and 25 thx. Earlier this year, a reselection of counties was conducted. This process is completed every five years. For the next five years, 26 counties will be observed across 744 statewide sites. This report detailed the findings of this investigation.

The observers surveyed 99,476 vehicles and 120,758 occupants, both drivers and front-seat passengers. The observers were unable to determine seat belt usage on a total of 3,125 occupants which represents 2.6% of the total vehicle occupants.

The results across the five vehicle categories were fairly consistent with recent studies. Cars showed a seat belt usage rate of 87.6% a .6 increase since 2021. Since 2013, seat belt usage in Cars increased by 5.0 which represents a 6% increase over that time period. Vans scored an 89.0% seat belt usage rate which was .9 better than found in 2021. This one-year improvement is a 1% increase. SUVs, which demonstrated a 90.3% rate improved by 4.4 points or 5%. Commercial Vehicles scored a 79.2% which is a 3.0 improvement and represents a 3.9% increase. Trucks is the sole category that dropped since 2021. In 2022, Trucks scored a 78.5% usage rate, while it earned an 88.1% in 2021. The 78.5% appears to be more in line with what Trucks have earned historically. The Premobilization rate was 80.5% and Trucks earned a five-year moving average of 81.5%. Hence, the 2021 rate for Trucks may be an anomaly. The overall seat belt usage rate improved slightly since the premobilization study in May of this year. The rate across all five vehicle categories stands at 87.0% with the premobilization rate of 86.4%. (Eleven of the 744 Statewide sites produced zero observations).

The five vehicle categories show significant improvements since 2013. The overall rate of 87.0% in 2022 compares nicely with the rate of 82.1% in 2013. Overall, the five categories improved 5.97% since 2013. The largest improvement is found in Commercial Vehicles, which improved to 79.2% from 65.5% in 2013. This represents a 21.0% ((79.2-65.5)/65.5) increase for the category.

Seat belt usage rates appear to be related to the speed of the roadway. The highest rate of usage is found when vehicles are driving on roadways with posted signage of $>50 \mathrm{mph}$, standing at 90.7%. This is followed by roadways with posted speeds of $31-50 \mathrm{mph}$ scoring a rate of 86.7% and finally roadways at $0-30 \mathrm{mph}$ with a rate of 84.2. The speed issue appears to be related to the type of roadway as well. Primary roads, which have more lanes and higher speeds scored a rate of 92.6%, followed by Secondary roads at 88.5%, and Local roads, which are neighborhood streets with slower speeds, scored, an 85.6%.

Of the counties observed, eleven counties scored a rate above 90.0%. This is an improvement of 2 counties since 2021 and an improvement of 5 counties since 2020. This statistic needs to be further analyzed as there are new counties included in this year's study. Five of seven counties included in both 2021 and 2022 scored above 90.0% in both years (Garfield, Arapahoe, Denver, Boulder, and Morgan). Two counties included in both years were close to the 90.0% benchmark but fell just beneath the mark (Montrose at 87.8% and Douglas at 87.2%).

An evaluation among the top ten and bottom ten counties on usage rate demonstrates the more densely populated areas are more likely to wear their seat belts. The top ten counties scored a usage rate of 93.32% and have a population per square mile of 601 , while the bottom ten counties average a usage rate of 81.11% but only have a population of 177 per square mile.

Overall, the 2022 statewide seat belt study demonstrates consistent results with recent years. The 87% rate is the second highest rate observed since 2013, (highest rate of 88.3% found in 2019). The three categories of Cars, SUVs and Vans hover around 90% with the last two categories of Trucks and Commercial Vehicles staying around the 80% mark.

Appendix 1

Statewide Seat-belt Usage
by Counties in Alphabetical order

	\# of Sites	$\begin{gathered} \text { Estimate } \\ \% \end{gathered}$	$\begin{gathered} \text { Std } \\ \text { Error } \end{gathered}$	CV \%	$\begin{aligned} & \hline \text { Lower } \\ & \text { 95\% } \\ & \text { Limit } \end{aligned}$	$\begin{aligned} & \text { Upper } \\ & \text { 95\% } \\ & \text { Limit } \end{aligned}$
ADAMS	48	90.1	2.2	2.4	85.9	94.3
ARAPAHOE	48	93.8	1.4	1.51	91	96.6
BOULDER	48	92.9	1.2	1.32	90.5	95.3
CHAFFEE	12	69.2	1.5	2.17	66.2	72.1
COSTILLA	12	90.9	1.4	1.57	88.1	93.7
DELTA	12	87.6	1.8	2.08	84.0	91.2
DENVER	48	93.6	1.6	1.75	90.4	96.8
DOUGLAS	48	87.2	3.1	3.60	81.0	93.3
EAGLE	12	93.6	0.7	0.78	92.2	95.0
EL PASO	48	86.7	1.5	1.73	83.8	89.6
FREMONT	12	78.1	3.1	4.01	71.9	84.2
GARFIELD	12	96	1.0	1.04	94.0	98.0
GRAND	12	96.3	0.8	0.87	94.7	97.9
JEFFERSON	48	80.8	0.8	1.01	79.2	82.4
LA PLATA	12	87.7	1.0	1.16	85.7	89.7
LARIMER	48	88.0	0.9	1.05	86.2	89.8
LAS ANIMAS	12	87.8	3.2	3.65	81.5	94.1
LOGAN	12	91.1	4.2	4.59	82.9	99.3
MESA	48	92.1	1.2	1.36	89.7	94.6
MONTEZUMA	12	86.1	1.7	1.92	82.9	89.4
MONTROSE	12	87.8	2.5	2.87	82.9	92.8
MORGAN	12	92.9	2.0	2.19	88.9	96.9
OTERO	12	89.3	0.9	1.03	87.5	91.1
PARK	48	88.6	1.5	1.65	85.8	91.5
PUEBLO	48	67.6	2.7	3.99	62.3	72.9
WELD	48	80.1	2.4	2.96	75.4	84.7

Appendix 2

Number of Segments Selected (n) by County and MTFCC

County	MTFCC Code			Total
	$\begin{gathered} \text { Primary: } \\ \text { S1100 } \end{gathered}$	Secondary: S1200	Local: S1400	
Adams	12	15	21	48
Arapahoe	6	17	25	48
Boulder	0	29	19	48
Chaffee	0	12	0	12
Costilla	0	12	0	12
Delta	0	12	0	12
Denver	9	17	22	48
Douglas	8	14	26	48
Eagle	5	7	0	12
El Paso	3	15	30	48
Fremont	0	12	0	12
Garfield	4	8	0	12
Grand	0	12	0	12
Jefferson	10	17	21	48
La Plata	0	12	0	12
Larimer	4	24	20	48
Las Animas	2	10	0	12
Logan	2	10	0	12
Mesa	9	23	16	48
Montezuma	0	12	0	12
Montrose	0	12	0	12
Morgan	3	9	0	12
Otero	0	12	0	12
Park	0	25	23	48
Pueblo	8	22	18	48
Weld	4	28	16	48

Appendix 3
Weights for the Colorado State Seat-Belt Usage Observational Survey

County	MTFCC	Sampling Weight	Selection Probability
ADAMS	S1400	1215.14286	0.000822949
ADAMS	S1100/S1200	67.50794	0.014813073
ARAPAHOE	S1400	950.21429	0.001052394
ARAPAHOE	S1100/S1200	52.78968	0.018943096
BOULDER	S1400	976.35714	0.001024215
BOULDER	S1200	54.24206	0.018435877
CHAFFEE	S1200	42.21429	0.023688663
COSTILLA	S1200	24.78571	0.040345821
DELTA	S1200	50.21429	0.019914652
DENVER	S1400	1069.89286	0.000934673
DENVER	S1100/S1200	59.43849	0.016824115
DOUGLAS	S1400	639.03571	0.001564858
DOUGLAS	S1100/S1200	35.50198	0.02816744
EAGLE	S1100/S1200	71.85714	0.013916501
EL PASO	S1400	1465.07143	0.000682561
EL PASO	S1100/S1200	81.39286	0.01228609
FREMONT	S1200	58.21429	0.017177914
GARFIELD	S1100/S1200	87	0.011494253
GRAND	S1200	46.78571	0.021374046
JEFFERSON	S1400	1365.51786	0.000732323
JEFFERSON	S1100/S1200	75.8621	0.013181812
LA PLATA	S1200	73.42857	0.013618677
LARIMER	S1400	1267.42857	0.000788999
LARIMER	S1100/S1200	70.4127	0.014201984
LAS ANIMAS	S1100/S1200	59.21429	0.016887817
LOGAN	S1100/S1200	47.64286	0.020989505
MESA	S1400	804.46429	0.001243063
MESA	S1100/S1200	44.69246	0.022375139
MONTEZUMA	S1200	76.28571	0.013108614

MONTROSE	S1200	65.92857	0.015167931
MORGAN	S1100/S1200	54.85714	0.018229167
OTERO	S1200	89.64286	0.011155379
PARK	S1400	400.17857	0.002498884
PARK	S1200	22.23214	0.04497992
PUEBLO	S1400	896.82143	0.001115049
PUEBLO	S1100/S1200	49.82341	0.020070885
WELD	S1400	1195.76786	0.000836283
WELD	S1100/S1200	66.43155	0.015053089

Appendix 4

Weights for the Colorado State Seat Belt Usage Observational Survey by Survey Site (NOTE: There are 6 Alternate Sites used for Survey. Site IDs greater than 744 reference those Alternate Sites from Reserve Pool)

Site	County	MTFCC	Sampling Weight	Selection Prob
ADAMS				
1	ADAMS	Primary	67.50793651	0.014813073
2	ADAMS	Primary	67.50793651	0.014813073
3	ADAMS	Primary	67.50793651	0.014813073
4	ADAMS	Primary	67.50793651	0.014813073
5	ADAMS	Primary	67.50793651	0.014813073
6	ADAMS	Primary	67.50793651	0.014813073
7	ADAMS	Primary	67.50793651	0.014813073
8	ADAMS	Primary	67.50793651	0.014813073
9	ADAMS	Primary	67.50793651	0.014813073
10	ADAMS	Primary	67.50793651	0.014813073
11	ADAMS	Primary	67.50793651	0.014813073
12	ADAMS	Primary	67.50793651	0.014813073
13	ADAMS	Secondary	67.50793651	0.014813073
14	ADAMS	Secondary	67.50793651	0.014813073
15	ADAMS	Secondary	67.50793651	0.014813073
16	ADAMS	Secondary	67.50793651	0.014813073
17	ADAMS	Secondary	67.50793651	0.014813073
18	ADAMS	Secondary	67.50793651	0.014813073
19	ADAMS	Secondary	67.50793651	0.014813073
20	ADAMS	Secondary	67.50793651	0.014813073
21	ADAMS	Secondary	67.50793651	0.014813073
22	ADAMS	Secondary	67.50793651	0.014813073
23	ADAMS	Secondary	67.50793651	0.014813073
24	ADAMS	Secondary	67.50793651	0.014813073
25	ADAMS	Secondary	67.50793651	0.014813073
26	ADAMS	Secondary	67.50793651	0.014813073
27	ADAMS	Secondary	67.50793651	0.014813073
28	ADAMS	Local	1215.142857	0.000822949
29	ADAMS	Local	1215.142857	0.000822949
30	ADAMS	Local	1215.142857	0.000822949
31	ADAMS	Local	1215.142857	0.000822949
32	ADAMS	Local	1215.142857	0.000822949
33	ADAMS	Local	1215.142857	0.000822949
34	ADAMS	Local	1215.142857	0.000822949
35	ADAMS	Local	1215.142857	0.000822949
1				
10				

36	ADAMS	Local	1215.142857	0.000822949
37	ADAMS	Local	1215.142857	0.000822949
38	ADAMS	Local	1215.142857	0.000822949
39	ADAMS	Local	1215.142857	0.000822949
40	ADAMS	Local	1215.142857	0.000822949
41	ADAMS	Local	1215.142857	0.000822949
42	ADAMS	Local	1215.142857	0.000822949
43	ADAMS	Local	1215.142857	0.000822949
44	ADAMS	Local	1215.142857	0.000822949
45	ADAMS	Local	1215.142857	0.000822949
46	ADAMS	Local	1215.142857	0.000822949
47	ADAMS	Local	1215.142857	0.000822949
48	ADAMS	Local	1215.142857	0.000822949
ARAPAHOE				
49	ARAPAHOE	Primary	52.78968254	0.018943096
50	ARAPAHOE	Primary	52.78968254	0.018943096
51	ARAPAHOE	Primary	52.78968254	0.018943096
52	ARAPAHOE	Primary	52.78968254	0.018943096
53	ARAPAHOE	Primary	52.78968254	0.018943096
54	ARAPAHOE	Primary	52.78968254	0.018943096
55	ARAPAHOE	Secondary	52.78968254	0.018943096
56	ARAPAHOE	Secondary	52.78968254	0.018943096
57	ARAPAHOE	Secondary	52.78968254	0.018943096
58	ARAPAHOE	Secondary	52.78968254	0.018943096
59	ARAPAHOE	Secondary	52.78968254	0.018943096
60	ARAPAHOE	Secondary	52.78968254	0.018943096
61	ARAPAHOE	Secondary	52.78968254	0.018943096
62	ARAPAHOE	Secondary	52.78968254	0.018943096
63	ARAPAHOE	Secondary	52.78968254	0.018943096
64	ARAPAHOE	Secondary	52.78968254	0.018943096
65	ARAPAHOE	Secondary	52.78968254	0.018943096
66	ARAPAHOE	Secondary	52.78968254	0.018943096
67	ARAPAHOE	Secondary	52.78968254	0.018943096
68	ARAPAHOE	Secondary	52.78968254	0.018943096
69	ARAPAHOE	Secondary	52.78968254	0.018943096
70	ARAPAHOE	Secondary	52.78968254	0.018943096
71	ARAPAHOE	Secondary	52.78968254	0.018943096
72	ARAPAHOE	Local	950.2142857	0.001052394
73	ARAPAHOE	Local	950.2142857	0.001052394
74	ARAPAHOE	Local	950.2142857	0.001052394
75	ARAPAHOE	Local	950.2142857	0.001052394
76	ARAPAHOE	Local	950.2142857	0.001052394
77	ARAPAHOE	Local	950.2142857	0.001052394
78	ARAPAHOE	Local	950.2142857	0.001052394

79	ARAPAHOE	Local	950.2142857	0.001052394
80	ARAPAHOE	Local	950.2142857	0.001052394
81	ARAPAHOE	Local	950.2142857	0.001052394
82	ARAPAHOE	Local	950.2142857	0.001052394
83	ARAPAHOE	Local	950.2142857	0.001052394
84	ARAPAHOE	Local	950.2142857	0.001052394
85	ARAPAHOE	Local	950.2142857	0.001052394
86	ARAPAHOE	Local	950.2142857	0.001052394
87	ARAPAHOE	Local	950.2142857	0.001052394
88	ARAPAHOE	Local	950.2142857	0.001052394
89	ARAPAHOE	Local	950.2142857	0.001052394
90	ARAPAHOE	Local	950.2142857	0.001052394
91	ARAPAHOE	Local	950.2142857	0.001052394
92	ARAPAHOE	Local	950.2142857	0.001052394
93	ARAPAHOE	Local	950.2142857	0.001052394
94	ARAPAHOE	Local	950.2142857	0.001052394
95	ARAPAHOE	Local	950.2142857	0.001052394
96	ARAPAHOE	Local	950.2142857	0.001052394
BOULDER				
97	BOULDER	Secondary	54.24206349	0.018435877
98	BOULDER	Secondary	54.24206349	0.018435877
99	BOULDER	Secondary	54.24206349	0.018435877
100	BOULDER	Secondary	54.24206349	0.018435877
101	BOULDER	Secondary	54.24206349	0.018435877
102	BOULDER	Secondary	54.24206349	0.018435877
103	BOULDER	Secondary	54.24206349	0.018435877
104	BOULDER	Secondary	54.24206349	0.018435877
105	BOULDER	Secondary	54.24206349	0.018435877
106	BOULDER	Secondary	54.24206349	0.018435877
107	BOULDER	Secondary	54.24206349	0.018435877
108	BOULDER	Secondary	54.24206349	0.018435877
109	BOULDER	Secondary	54.24206349	0.018435877
110	BOULDER	Secondary	54.24206349	0.018435877
111	BOULDER	Secondary	54.24206349	0.018435877
112	BOULDER	Secondary	54.24206349	0.018435877
113	BOULDER	Secondary	54.24206349	0.018435877
114	BOULDER	Secondary	54.24206349	0.018435877
115	BOULDER	Secondary	54.24206349	0.018435877
116	BOULDER	Secondary	54.24206349	0.018435877
117	BOULDER	Secondary	54.24206349	0.018435877
118	BOULDER	Secondary	54.24206349	0.018435877
119	BOULDER	Secondary	54.24206349	0.018435877
120	BOULDER	Secondary	54.24206349	0.018435877
121	BOULDER	Secondary	54.24206349	0.018435877

122	BOULDER	Secondary	54.24206349	0.018435877
123	BOULDER	Secondary	54.24206349	0.018435877
124	BOULDER	Secondary	54.24206349	0.018435877
125	BOULDER	Secondary	54.24206349	0.018435877
126	BOULDER	Local	976.3571429	0.001024215
127	BOULDER	Local	976.3571429	0.001024215
128	BOULDER	Local	976.3571429	0.001024215
129	BOULDER	Local	976.3571429	0.001024215
130	BOULDER	Local	976.3571429	0.001024215
131	BOULDER	Local	976.3571429	0.001024215
132	BOULDER	Local	976.3571429	0.001024215
133	BOULDER	Local	976.3571429	0.001024215
134	BOULDER	Local	976.3571429	0.001024215
135	BOULDER	Local	976.3571429	0.001024215
136	BOULDER	Local	976.3571429	0.001024215
137	BOULDER	Local	976.3571429	0.001024215
138	BOULDER	Local	976.3571429	0.001024215
139	BOULDER	Local	976.3571429	0.001024215
140	BOULDER	Local	976.3571429	0.001024215
141	BOULDER	Local	976.3571429	0.001024215
142	BOULDER	Local	976.3571429	0.001024215
143	BOULDER	Local	976.3571429	0.001024215
144	BOULDER	Local	976.3571429	0.001024215
CHAFFEE				
145	CHAFFEE	Secondary	42.21428571	0.023688663
146	CHAFFEE	Secondary	42.21428571	0.023688663
147	CHAFFEE	Secondary	42.21428571	0.023688663
148	CHAFFEE	Secondary	42.21428571	0.023688663
149	CHAFFEE	Secondary	42.21428571	0.023688663
150	CHAFFEE	Secondary	42.21428571	0.023688663
151	CHAFFEE	Secondary	42.21428571	0.023688663
152	CHAFFEE	Secondary	42.21428571	0.023688663
153	CHAFFEE	Secondary	42.21428571	0.023688663
154	CHAFFEE	Secondary	42.21428571	0.023688663
155	CHAFFEE	Secondary	42.21428571	0.023688663
156	CHAFFEE	Secondary	42.21428571	0.023688663
COSTILLA				
157	COSTILLA	Secondary	24.78571429	0.040345821
158	COSTILLA	Secondary	24.78571429	0.040345821
159	COSTILLA	Secondary	24.78571429	0.040345821
160	COSTILLA	Secondary	24.78571429	0.040345821
161	COSTILLA	Secondary	24.78571429	0.040345821
162	COSTILLA	Secondary	24.78571429	0.040345821
163	COSTILLA	Secondary	24.78571429	0.040345821

164	COSTILLA	Secondary	24.78571429	0.040345821
165	COSTILLA	Secondary	24.78571429	0.040345821
166	COSTILLA	Secondary	24.78571429	0.040345821
167	COSTILLA	Secondary	24.78571429	0.040345821
168	COSTILLA	Secondary	24.78571429	0.040345821
DELTA				
169	DELTA	Secondary	50.21428571	0.019914651
170	DELTA	Secondary	50.21428571	0.019914651
171	DELTA	Secondary	50.21428571	0.019914651
172	DELTA	Secondary	50.21428571	0.019914651
173	DELTA	Secondary	50.21428571	0.019914651
174	DELTA	Secondary	50.21428571	0.019914651
175	DELTA	Secondary	50.21428571	0.019914651
176	DELTA	Secondary	50.21428571	0.019914651
177	DELTA	Secondary	50.21428571	0.019914651
178	DELTA	Secondary	50.21428571	0.019914651
179	DELTA	Secondary	50.21428571	0.019914651
180	DELTA	Secondary	50.21428571	0.019914651
DENVER				
181	DENVER	Primary	59.43849206	0.016824115
182	DENVER	Primary	59.43849206	0.016824115
183	DENVER	Primary	59.43849206	0.016824115
184	DENVER	Primary	59.43849206	0.016824115
185	DENVER	Primary	59.43849206	0.016824115
186	DENVER	Primary	59.43849206	0.016824115
187	DENVER	Primary	59.43849206	0.016824115
188	DENVER	Primary	59.43849206	0.016824115
189	DENVER	Primary	59.43849206	0.016824115
190	DENVER	Secondary	59.43849206	0.016824115
191	DENVER	Secondary	59.43849206	0.016824115
192	DENVER	Secondary	59.43849206	0.016824115
193	DENVER	Secondary	59.43849206	0.016824115
194	DENVER	Secondary	59.43849206	0.016824115
195	DENVER	Secondary	59.43849206	0.016824115
196	DENVER	Secondary	59.43849206	0.016824115
197	DENVER	Secondary	59.43849206	0.016824115
198	DENVER	Secondary	59.43849206	0.016824115
199	DENVER	Secondary	59.43849206	0.016824115
200	DENVER	Secondary	59.43849206	0.016824115
201	DENVER	Secondary	59.43849206	0.016824115
202	DENVER	Secondary	59.43849206	0.016824115
203	DENVER	Secondary	59.43849206	0.016824115
204	DENVER	Secondary	59.43849206	0.016824115
205	DENVER	Secondary	59.43849206	0.016824115

206	DENVER	Secondary	59.43849206	0.016824115
207	DENVER	Local	1069.892857	0.000934673
208	DENVER	Local	1069.892857	0.000934673
209	DENVER	Local	1069.892857	0.000934673
210	DENVER	Local	1069.892857	0.000934673
211	DENVER	Local	1069.892857	0.000934673
212	DENVER	Local	1069.892857	0.000934673
213	DENVER	Local	1069.892857	0.000934673
214	DENVER	Local	1069.892857	0.000934673
215	DENVER	Local	1069.892857	0.000934673
216	DENVER	Local	1069.892857	0.000934673
217	DENVER	Local	1069.892857	0.000934673
218	DENVER	Local	1069.892857	0.000934673
219	DENVER	Local	1069.892857	0.000934673
220	DENVER	Local	1069.892857	0.000934673
221	DENVER	Local	1069.892857	0.000934673
222	DENVER	Local	1069.892857	0.000934673
223	DENVER	Local	1069.892857	0.000934673
224	DENVER	Local	1069.892857	0.000934673
225	DENVER	Local	1069.892857	0.000934673
226	DENVER	Local	1069.892857	0.000934673
227	DENVER	Local	1069.892857	0.000934673
228	DENVER	Local	1069.892857	0.000934673
DOUGLAS				
229	DOUGLAS	Primary	35.50198413	0.02816744
230	DOUGLAS	Primary	35.50198413	0.02816744
231	DOUGLAS	Primary	35.50198413	0.02816744
232	DOUGLAS	Primary	35.50198413	0.02816744
233	DOUGLAS	Primary	35.50198413	0.02816744
234	DOUGLAS	Primary	35.50198413	0.02816744
235	DOUGLAS	Primary	35.50198413	0.02816744
236	DOUGLAS	Primary	35.50198413	0.02816744
237	DOUGLAS	Secondary	35.50198413	0.02816744
238	DOUGLAS	Secondary	35.50198413	0.02816744
239	DOUGLAS	Secondary	35.50198413	0.02816744
240	DOUGLAS	Secondary	35.50198413	0.02816744
241	DOUGLAS	Secondary	35.50198413	0.02816744
242	DOUGLAS	Secondary	35.50198413	0.02816744
243	DOUGLAS	Secondary	35.50198413	0.02816744
244	DOUGLAS	Secondary	35.50198413	0.02816744
245	DOUGLAS	Secondary	35.50198413	0.02816744
246	DOUGLAS	Secondary	35.50198413	0.02816744
247	DOUGLAS	Secondary	35.50198413	0.02816744
248	DOUGLAS	Secondary	35.50198413	0.02816744

249	DOUGLAS	Secondary	35.50198413	0.02816744
250	DOUGLAS	Secondary	35.50198413	0.02816744
251	DOUGLAS	Local	639.0357143	0.001564858
252	DOUGLAS	Local	639.0357143	0.001564858
253	DOUGLAS	Local	639.0357143	0.001564858
254	DOUGLAS	Local	639.0357143	0.001564858
255	DOUGLAS	Local	639.0357143	0.001564858
256	DOUGLAS	Local	639.0357143	0.001564858
257	DOUGLAS	Local	639.0357143	0.001564858
258	DOUGLAS	Local	639.0357143	0.001564858
259	DOUGLAS	Local	639.0357143	0.001564858
260	DOUGLAS	Local	639.0357143	0.001564858
261	DOUGLAS	Local	639.0357143	0.001564858
262	DOUGLAS	Local	639.0357143	0.001564858
263	DOUGLAS	Local	639.0357143	0.001564858
264	DOUGLAS	Local	639.0357143	0.001564858
265	DOUGLAS	Local	639.0357143	0.001564858
266	DOUGLAS	Local	639.0357143	0.001564858
267	DOUGLAS	Local	639.0357143	0.001564858
268	DOUGLAS	Local	639.0357143	0.001564858
269	DOUGLAS	Local	639.0357143	0.001564858
270	DOUGLAS	Local	639.0357143	0.001564858
271	DOUGLAS	Local	639.0357143	0.001564858
272	DOUGLAS	Local	639.0357143	0.001564858
273	DOUGLAS	Local	639.0357143	0.001564858
274	DOUGLAS	Local	639.0357143	0.001564858
275	DOUGLAS	Local	639.0357143	0.001564858
276	DOUGLAS	Local	639.0357143	0.001564858
EAGLE				
277	EAGLE	Primary	71.85714286	0.013916501
278	EAGLE	Primary	71.85714286	0.013916501
279	EAGLE	Primary	71.85714286	0.013916501
280	EAGLE	Primary	71.85714286	0.013916501
281	EAGLE	Primary	71.85714286	0.013916501
282	EAGLE	Secondary	71.85714286	0.013916501
283	EAGLE	Secondary	71.85714286	0.013916501
284	EAGLE	Secondary	71.85714286	0.013916501
285	EAGLE	Secondary	71.85714286	0.013916501
286	EAGLE	Secondary	71.85714286	0.013916501
287	EAGLE	Secondary	71.85714286	0.013916501
288	EAGLE	Secondary	71.85714286	0.013916501
EL PASO				
289	EL PASO	Primary	81.39285714	0.01228609
290	EL PASO	Primary	81.39285714	0.01228609

291	EL PASO	Primary	81.39285714	0.01228609
292	EL PASO	Secondary	81.39285714	0.01228609
293	EL PASO	Secondary	81.39285714	0.01228609
294	EL PASO	Secondary	81.39285714	0.01228609
295	EL PASO	Secondary	81.39285714	0.01228609
296	EL PASO	Secondary	81.39285714	0.01228609
297	EL PASO	Secondary	81.39285714	0.01228609
298	EL PASO	Secondary	81.39285714	0.01228609
299	EL PASO	Secondary	81.39285714	0.01228609
300	EL PASO	Secondary	81.39285714	0.01228609
301	EL PASO	Secondary	81.39285714	0.01228609
302	EL PASO	Secondary	81.39285714	0.01228609
303	EL PASO	Secondary	81.39285714	0.01228609
304	EL PASO	Secondary	81.39285714	0.01228609
305	EL PASO	Secondary	81.39285714	0.01228609
306	EL PASO	Secondary	81.39285714	0.01228609
307	EL PASO	Local	1465.071429	0.000682561
308	EL PASO	Local	1465.071429	0.000682561
309	EL PASO	Local	1465.071429	0.000682561
310	EL PASO	Local	1465.071429	0.000682561
311	EL PASO	Local	1465.071429	0.000682561
312	EL PASO	Local	1465.071429	0.000682561
313	EL PASO	Local	1465.071429	0.000682561
314	EL PASO	Local	1465.071429	0.000682561
315	EL PASO	Local	1465.071429	0.000682561
316	EL PASO	Local	1465.071429	0.000682561
317	EL PASO	Local	1465.071429	0.000682561
318	EL PASO	Local	1465.071429	0.000682561
319	EL PASO	Local	1465.071429	0.000682561
320	EL PASO	Local	1465.071429	0.000682561
321	EL PASO	Local	1465.071429	0.000682561
322	EL PASO	Local	1465.071429	0.000682561
323	EL PASO	Local	1465.071429	0.000682561
324	EL PASO	Local	1465.071429	0.000682561
325	EL PASO	Local	1465.071429	0.000682561
326	EL PASO	Local	1465.071429	0.000682561
327	EL PASO	Local	1465.071429	0.000682561
328	EL PASO	Local	1465.071429	0.000682561
329	EL PASO	Local	1465.071429	0.000682561
330	EL PASO	Local	1465.071429	0.000682561
331	EL PASO	Local	1465.071429	0.000682561
332	EL PASO	Local	1465.071429	0.000682561
333	EL PASO	Local	1465.071429	0.000682561
334	EL PASO	Local	1465.071429	0.000682561

335	EL PASO	Local	1465.071429	0.000682561
336	EL PASO	Local	1465.071429	0.000682561
FREMONT				
337	FREMONT	Secondary	58.21428571	0.017177914
338	FREMONT	Secondary	58.21428571	0.017177914
339	FREMONT	Secondary	58.21428571	0.017177914
340	FREMONT	Secondary	58.21428571	0.017177914
341	FREMONT	Secondary	58.21428571	0.017177914
342	FREMONT	Secondary	58.21428571	0.017177914
343	FREMONT	Secondary	58.21428571	0.017177914
344	FREMONT	Secondary	58.21428571	0.017177914
345	FREMONT	Secondary	58.21428571	0.017177914
346	FREMONT	Secondary	58.21428571	0.017177914
347	FREMONT	Secondary	58.21428571	0.017177914
348	FREMONT	Secondary	58.21428571	0.017177914
GARFIELD				
349	GARFIELD	Primary	87	0.011494253
350	GARFIELD	Primary	87	0.011494253
351	GARFIELD	Primary	87	0.011494253
352	GARFIELD	Primary	87	0.011494253
353	GARFIELD	Secondary	87	0.011494253
354	GARFIELD	Secondary	87	0.011494253
355	GARFIELD	Secondary	87	0.011494253
356	GARFIELD	Secondary	87	0.011494253
357	GARFIELD	Secondary	87	0.011494253
358	GARFIELD	Secondary	87	0.011494253
359	GARFIELD	Secondary	87	0.011494253
360	GARFIELD	Secondary	87	0.011494253
GRAND				
361	GRAND	Secondary	46.78571429	0.021374046
362	GRAND	Secondary	46.78571429	0.021374046
363	GRAND	Secondary	46.78571429	0.021374046
364	GRAND	Secondary	46.78571429	0.021374046
365	GRAND	Secondary	46.78571429	0.021374046
366	GRAND	Secondary	46.78571429	0.021374046
367	GRAND	Secondary	46.78571429	0.021374046
368	GRAND	Secondary	46.78571429	0.021374046
369	GRAND	Secondary	46.78571429	0.021374046
370	GRAND	Secondary	46.78571429	0.021374046
371	GRAND	Secondary	46.78571429	0.021374046
372	GRAND	Secondary	46.78571429	0.021374046
JEFFERSON				
373	JEFFERSON	Primary	75.86210317	0.013181812
374	JEFFERSON	Primary	75.86210317	0.013181812

375	JEFFERSON	Primary	75.86210317	0.013181812
376	JEFFERSON	Primary	75.86210317	0.013181812
377	JEFFERSON	Primary	75.86210317	0.013181812
378	JEFFERSON	Primary	75.86210317	0.013181812
379	JEFFERSON	Primary	75.86210317	0.013181812
380	JEFFERSON	Primary	75.86210317	0.013181812
381	JEFFERSON	Primary	75.86210317	0.013181812
382	JEFFERSON	Primary	75.86210317	0.013181812
383	JEFFERSON	Secondary	75.86210317	0.013181812
384	JEFFERSON	Secondary	75.86210317	0.013181812
385	JEFFERSON	Secondary	75.86210317	0.013181812
386	JEFFERSON	Secondary	75.86210317	0.013181812
387	JEFFERSON	Secondary	75.86210317	0.013181812
388	JEFFERSON	Secondary	75.86210317	0.013181812
389	JEFFERSON	Secondary	75.86210317	0.013181812
390	JEFFERSON	Secondary	75.86210317	0.013181812
391	JEFFERSON	Secondary	75.86210317	0.013181812
392	JEFFERSON	Secondary	75.86210317	0.013181812
393	JEFFERSON	Secondary	75.86210317	0.013181812
394	JEFFERSON	Secondary	75.86210317	0.013181812
395	JEFFERSON	Secondary	75.86210317	0.013181812
396	JEFFERSON	Secondary	75.86210317	0.013181812
397	JEFFERSON	Secondary	75.86210317	0.013181812
398	JEFFERSON	Secondary	75.86210317	0.013181812
399	JEFFERSON	Secondary	75.86210317	0.013181812
400	JEFFERSON	Local	1365.517857	0.000732323
401	JEFFERSON	Local	1365.517857	0.000732323
402	JEFFERSON	Local	1365.517857	0.000732323
403	JEFFERSON	Local	1365.517857	0.000732323
404	JEFFERSON	Local	1365.517857	0.000732323
405	JEFFERSON	Local	1365.517857	0.000732323
406	JEFFERSON	Local	1365.517857	0.000732323
407	JEFFERSON	Local	1365.517857	0.000732323
408	JEFFERSON	Local	1365.517857	0.000732323
409	JEFFERSON	Local	1365.517857	0.000732323
410	JEFFERSON	Local	1365.517857	0.000732323
411	JEFFERSON	Local	1365.517857	0.000732323
412	JEFFERSON	Local	1365.517857	0.000732323
413	JEFFERSON	Local	1365.517857	0.000732323
414	JEFFERSON	Local	1365.517857	0.000732323
415	JEFFERSON	Local	1365.517857	0.000732323
416	JEFFERSON	Local	1365.517857	0.000732323
417	JEFFERSON	Local	1365.517857	0.000732323
418	JEFFERSON	Local	1365.517857	0.000732323

419	JEFFERSON	Local	1365.517857	0.000732323
420	JEFFERSON	Local	1365.517857	0.000732323
LA PLATA				
421	LA PLATA	Secondary	73.42857143	0.013618677
422	LA PLATA	Secondary	73.42857143	0.013618677
423	LA PLATA	Secondary	73.42857143	0.013618677
424	LA PLATA	Secondary	73.42857143	0.013618677
425	LA PLATA	Secondary	73.42857143	0.013618677
426	LA PLATA	Secondary	73.42857143	0.013618677
427	LA PLATA	Secondary	73.42857143	0.013618677
428	LA PLATA	Secondary	73.42857143	0.013618677
429	LA PLATA	Secondary	73.42857143	0.013618677
430	LA PLATA	Secondary	73.42857143	0.013618677
431	LA PLATA	Secondary	73.42857143	0.013618677
432	LA PLATA	Secondary	73.42857143	0.013618677
LARIMER				
433	LARIMER	Primary	70.41269841	0.014201984
434	LARIMER	Primary	70.41269841	0.014201984
435	LARIMER	Primary	70.41269841	0.014201984
436	LARIMER	Primary	70.41269841	0.014201984
437	LARIMER	Secondary	70.41269841	0.014201984
438	LARIMER	Secondary	70.41269841	0.014201984
439	LARIMER	Secondary	70.41269841	0.014201984
440	LARIMER	Secondary	70.41269841	0.014201984
441	LARIMER	Secondary	70.41269841	0.014201984
442	LARIMER	Secondary	70.41269841	0.014201984
443	LARIMER	Secondary	70.41269841	0.014201984
444	LARIMER	Secondary	70.41269841	0.014201984
445	LARIMER	Secondary	70.41269841	0.014201984
446	LARIMER	Secondary	70.41269841	0.014201984
447	LARIMER	Secondary	70.41269841	0.014201984
448	LARIMER	Secondary	70.41269841	0.014201984
449	LARIMER	Secondary	70.41269841	0.014201984
450	LARIMER	Secondary	70.41269841	0.014201984
451	LARIMER	Secondary	70.41269841	0.014201984
452	LARIMER	Secondary	70.41269841	0.014201984
453	LARIMER	Secondary	70.41269841	0.014201984
454	LARIMER	Secondary	70.41269841	0.014201984
455	LARIMER	Secondary	70.41269841	0.014201984
456	LARIMER	Secondary	70.41269841	0.014201984
457	LARIMER	Secondary	70.41269841	0.014201984
458	LARIMER	Secondary	70.41269841	0.014201984
459	LARIMER	Secondary	70.41269841	0.014201984
460	LARIMER	Secondary	70.41269841	0.014201984

461	LARIMER	Local	1267.428571	0.000788999
462	LARIMER	Local	1267.428571	0.000788999
463	LARIMER	Local	1267.428571	0.000788999
464	LARIMER	Local	1267.428571	0.000788999
465	LARIMER	Local	1267.428571	0.000788999
466	LARIMER	Local	1267.428571	0.000788999
467	LARIMER	Local	1267.428571	0.000788999
468	LARIMER	Local	1267.428571	0.000788999
469	LARIMER	Local	1267.428571	0.000788999
470	LARIMER	Local	1267.428571	0.000788999
471	LARIMER	Local	1267.428571	0.000788999
472	LARIMER	Local	1267.428571	0.000788999
474	LARIMER	Local	1267.428571	0.000788999
475	LARIMER	Local	1267.428571	0.000788999
476	LARIMER	Local	1267.428571	0.000788999
477	LARIMER	Local	1267.428571	0.000788999
478	LARIMER	Local	1267.428571	0.000788999
820	LARIMER	Local	1267.428571	0.000788999
823	LARIMER	Local	1267.428571	0.000788999
824	LARIMER	Local	1267.428571	0.000788999
LAS ANIMAS				
481	LAS ANIMAS	Primary	59.21428571	0.016887817
482	LAS ANIMAS	Primary	59.21428571	0.016887817
483	LAS ANIMAS	Secondary	59.21428571	0.016887817
484	LAS ANIMAS	Secondary	59.21428571	0.016887817
485	LAS ANIMAS	Secondary	59.21428571	0.016887817
486	LAS ANIMAS	Secondary	59.21428571	0.016887817
487	LAS ANIMAS	Secondary	59.21428571	0.016887817
488	LAS ANIMAS	Secondary	59.21428571	0.016887817
489	LAS ANIMAS	Secondary	59.21428571	0.016887817
490	LAS ANIMAS	Secondary	59.21428571	0.016887817
491	LAS ANIMAS	Secondary	59.21428571	0.016887817
492	LAS ANIMAS	Secondary	59.21428571	0.016887817
LOGAN				
493	LOGAN	Primary	47.64285714	0.020989505
494	LOGAN	Primary	47.64285714	0.020989505
495	LOGAN	Secondary	47.64285714	0.020989505
496	LOGAN	Secondary	47.64285714	0.020989505
497	LOGAN	Secondary	47.64285714	0.020989505
498	LOGAN	Secondary	47.64285714	0.020989505
499	LOGAN	Secondary	47.64285714	0.020989505
500	LOGAN	Secondary	47.64285714	0.020989505
501	LOGAN	Secondary	47.64285714	0.020989505
502	LOGAN	Secondary	47.64285714	0.020989505

503	LOGAN	Secondary	47.64285714	0.020989505
504	LOGAN	Secondary	47.64285714	0.020989505
MESA				
505	MESA	Primary	44.69246032	0.022375139
506	MESA	Primary	44.69246032	0.022375139
507	MESA	Primary	44.69246032	0.022375139
508	MESA	Primary	44.69246032	0.022375139
509	MESA	Primary	44.69246032	0.022375139
510	MESA	Primary	44.69246032	0.022375139
511	MESA	Primary	44.69246032	0.022375139
512	MESA	Primary	44.69246032	0.022375139
513	MESA	Primary	44.69246032	0.022375139
514	MESA	Secondary	44.69246032	0.022375139
515	MESA	Secondary	44.69246032	0.022375139
516	MESA	Secondary	44.69246032	0.022375139
517	MESA	Secondary	44.69246032	0.022375139
518	MESA	Secondary	44.69246032	0.022375139
519	MESA	Secondary	44.69246032	0.022375139
520	MESA	Secondary	44.69246032	0.022375139
521	MESA	Secondary	44.69246032	0.022375139
522	MESA	Secondary	44.69246032	0.022375139
523	MESA	Secondary	44.69246032	0.022375139
524	MESA	Secondary	44.69246032	0.022375139
525	MESA	Secondary	44.69246032	0.022375139
526	MESA	Secondary	44.69246032	0.022375139
527	MESA	Secondary	44.69246032	0.022375139
528	MESA	Secondary	44.69246032	0.022375139
529	MESA	Secondary	44.69246032	0.022375139
530	MESA	Secondary	44.69246032	0.022375139
531	MESA	Secondary	44.69246032	0.022375139
532	MESA	Secondary	44.69246032	0.022375139
533	MESA	Secondary	44.69246032	0.022375139
534	MESA	Secondary	44.69246032	0.022375139
535	MESA	Secondary	44.69246032	0.022375139
536	MESA	Secondary	44.69246032	0.022375139
538	MESA	Local	804.4642857	0.001243063
539	MESA	Local	804.4642857	0.001243063
540	MESA	Local	804.4642857	0.001243063
541	MESA	Local	804.4642857	0.001243063
542	MESA	Local	804.4642857	0.001243063
543	MESA	Local	804.4642857	0.001243063
544	MESA	Local	804.4642857	0.001243063
545	MESA	Local	804.4642857	0.001243063
546	MESA	Local	804.4642857	0.001243063

547	MESA	Local	804.4642857	0.001243063
548	MESA	Local	804.4642857	0.001243063
549	MESA	Local	804.4642857	0.001243063
550	MESA	Local	804.4642857	0.001243063
551	MESA	Local	804.4642857	0.001243063
552	MESA	Local	804.4642857	0.001243063
834	MESA	Local	804.4642857	0.001243063
MONTEZUMA				
553	MONTEZUMA	Secondary	76.28571429	0.013108614
554	MONTEZUMA	Secondary	76.28571429	0.013108614
555	MONTEZUMA	Secondary	76.28571429	0.013108614
556	MONTEZUMA	Secondary	76.28571429	0.013108614
557	MONTEZUMA	Secondary	76.28571429	0.013108614
558	MONTEZUMA	Secondary	76.28571429	0.013108614
559	MONTEZUMA	Secondary	76.28571429	0.013108614
560	MONTEZUMA	Secondary	76.28571429	0.013108614
561	MONTEZUMA	Secondary	76.28571429	0.013108614
562	MONTEZUMA	Secondary	76.28571429	0.013108614
563	MONTEZUMA	Secondary	76.28571429	0.013108614
564	MONTEZUMA	Secondary	76.28571429	0.013108614
MONTROSE				
565	MONTROSE	Secondary	65.92857143	0.015167931
566	MONTROSE	Secondary	65.92857143	0.015167931
567	MONTROSE	Secondary	65.92857143	0.015167931
568	MONTROSE	Secondary	65.92857143	0.015167931
569	MONTROSE	Secondary	65.92857143	0.015167931
570	MONTROSE	Secondary	65.92857143	0.015167931
571	MONTROSE	Secondary	65.92857143	0.015167931
572	MONTROSE	Secondary	65.92857143	0.015167931
573	MONTROSE	Secondary	65.92857143	0.015167931
574	MONTROSE	Secondary	65.92857143	0.015167931
575	MONTROSE	Secondary	65.92857143	0.015167931
576	MONTROSE	Secondary	65.92857143	0.015167931
MORGAN				
577	MORGAN	Primary	54.85714286	0.018229167
578	MORGAN	Primary	54.85714286	0.018229167
579	MORGAN	Primary	54.85714286	0.018229167
580	MORGAN	Secondary	54.85714286	0.018229167
581	MORGAN	Secondary	54.85714286	0.018229167
582	MORGAN	Secondary	54.85714286	0.018229167
583	MORGAN	Secondary	54.85714286	0.018229167
584	MORGAN	Secondary	54.85714286	0.018229167
585	MORGAN	Secondary	54.85714286	0.018229167
586	MORGAN	Secondary	54.85714286	0.018229167

587	MORGAN	Secondary	54.85714286	0.018229167
588	MORGAN	Secondary	54.85714286	0.018229167
OTERO				
589	OTERO	Secondary	89.64285714	0.011155378
590	OTERO	Secondary	89.64285714	0.011155378
591	OTERO	Secondary	89.64285714	0.011155378
592	OTERO	Secondary	89.64285714	0.011155378
593	OTERO	Secondary	89.64285714	0.011155378
594	OTERO	Secondary	89.64285714	0.011155378
595	OTERO	Secondary	89.64285714	0.011155378
596	OTERO	Secondary	89.64285714	0.011155378
597	OTERO	Secondary	89.64285714	0.011155378
598	OTERO	Secondary	89.64285714	0.011155378
599	OTERO	Secondary	89.64285714	0.011155378
600	OTERO	Secondary	89.64285714	0.011155378
PARK				
601	PARK	Secondary	22.23214286	0.04497992
602	PARK	Secondary	22.23214286	0.04497992
603	PARK	Secondary	22.23214286	0.04497992
604	PARK	Secondary	22.23214286	0.04497992
605	PARK	Secondary	22.23214286	0.04497992
606	PARK	Secondary	22.23214286	0.04497992
607	PARK	Secondary	22.23214286	0.04497992
608	PARK	Secondary	22.23214286	0.04497992
609	PARK	Secondary	22.23214286	0.04497992
610	PARK	Secondary	22.23214286	0.04497992
611	PARK	Secondary	22.23214286	0.04497992
612	PARK	Secondary	22.23214286	0.04497992
613	PARK	Secondary	22.23214286	0.04497992
614	PARK	Secondary	22.23214286	0.04497992
615	PARK	Secondary	22.23214286	0.04497992
616	PARK	Secondary	22.23214286	0.04497992
617	PARK	Secondary	22.23214286	0.04497992
618	PARK	Secondary	22.23214286	0.04497992
619	PARK	Secondary	22.23214286	0.04497992
620	PARK	Secondary	22.23214286	0.04497992
621	PARK	Secondary	22.23214286	0.04497992
622	PARK	Secondary	22.23214286	0.04497992
623	PARK	Secondary	22.23214286	0.04497992
624	PARK	Secondary	22.23214286	0.04497992
625	PARK	Secondary	22.23214286	0.04497992
626	PARK	Local	400.1785714	0.002498884
627	PARK	Local	400.1785714	0.002498884
628	PARK	Local	400.1785714	0.002498884

630	PARK	Local	400.1785714	0.002498884
631	PARK	Local	400.1785714	0.002498884
632	PARK	Local	400.1785714	0.002498884
633	PARK	Local	400.1785714	0.002498884
635	PARK	Local	400.1785714	0.002498884
636	PARK	Local	400.1785714	0.002498884
637	PARK	Local	400.1785714	0.002498884
638	PARK	Local	400.1785714	0.002498884
639	PARK	Local	400.1785714	0.002498884
640	PARK	Local	400.1785714	0.002498884
641	PARK	Local	400.1785714	0.002498884
642	PARK	Local	400.1785714	0.002498884
643	PARK	Local	400.1785714	0.002498884
644	PARK	Local	400.1785714	0.002498884
645	PARK	Local	400.1785714	0.002498884
646	PARK	Local	400.1785714	0.002498884
647	PARK	Local	400.1785714	0.002498884
648	PARK	Local	400.1785714	0.002498884
849	PARK	Local	400.1785714	0.002498884
851	PARK	Local	400.1785714	0.002498884
PUEBLO				
649	PUEBLO	Primary	49.8234127	0.020070885
650	PUEBLO	Primary	49.8234127	0.020070885
651	PUEBLO	Primary	49.8234127	0.020070885
652	PUEBLO	Primary	49.8234127	0.020070885
653	PUEBLO	Primary	49.8234127	0.020070885
654	PUEBLO	Primary	49.8234127	0.020070885
655	PUEBLO	Primary	49.8234127	0.020070885
656	PUEBLO	Primary	49.8234127	0.020070885
657	PUEBLO	Secondary	49.8234127	0.020070885
658	PUEBLO	Secondary	49.8234127	0.020070885
659	PUEBLO	Secondary	49.8234127	0.020070885
660	PUEBLO	Secondary	49.8234127	0.020070885
661	PUEBLO	Secondary	49.8234127	0.020070885
662	PUEBLO	Secondary	49.8234127	0.020070885
663	PUEBLO	Secondary	49.8234127	0.020070885
664	PUEBLO	Secondary	49.8234127	0.020070885
665	PUEBLO	Secondary	49.8234127	0.020070885
666	PUEBLO	Secondary	49.8234127	0.020070885
667	PUEBLO	Secondary	49.8234127	0.020070885
668	PUEBLO	Secondary	49.8234127	0.020070885
669	PUEBLO	Secondary	49.8234127	0.020070885
670	PUEBLO	Secondary	49.8234127	0.020070885
671	PUEBLO	Secondary	49.8234127	0.020070885

672	PUEBLO	Secondary	49.8234127	0.020070885
673	PUEBLO	Secondary	49.8234127	0.020070885
674	PUEBLO	Secondary	49.8234127	0.020070885
675	PUEBLO	Secondary	49.8234127	0.020070885
676	PUEBLO	Secondary	49.8234127	0.020070885
677	PUEBLO	Secondary	49.8234127	0.020070885
678	PUEBLO	Secondary	49.8234127	0.020070885
679	PUEBLO	Local	896.8214286	0.001115049
680	PUEBLO	Local	896.8214286	0.001115049
681	PUEBLO	Local	896.8214286	0.001115049
682	PUEBLO	Local	896.8214286	0.001115049
683	PUEBLO	Local	896.8214286	0.001115049
684	PUEBLO	Local	896.8214286	0.001115049
685	PUEBLO	Local	896.8214286	0.001115049
686	PUEBLO	Local	896.8214286	0.001115049
687	PUEBLO	Local	896.8214286	0.001115049
688	PUEBLO	Local	896.8214286	0.001115049
689	PUEBLO	Local	896.8214286	0.001115049
690	PUEBLO	Local	896.8214286	0.001115049
691	PUEBLO	Local	896.8214286	0.001115049
692	PUEBLO	Local	896.8214286	0.001115049
693	PUEBLO	Local	896.8214286	0.001115049
694	PUEBLO	Local	896.8214286	0.001115049
695	PUEBLO	Local	896.8214286	0.001115049
696	PUEBLO	Local	896.8214286	0.001115049
WELD				
697	WELD	Primary	66.43154762	0.015053089
698	WELD	Primary	66.43154762	0.015053089
699	WELD	Primary	66.43154762	0.015053089
700	WELD	Primary	66.43154762	0.015053089
701	WELD	Secondary	66.43154762	0.015053089
702	WELD	Secondary	66.43154762	0.015053089
703	WELD	Secondary	66.43154762	0.015053089
704	WELD	Secondary	66.43154762	0.015053089
705	WELD	Secondary	66.43154762	0.015053089
706	WELD	Secondary	66.43154762	0.015053089
707	WELD	Secondary	66.43154762	0.015053089
708	WELD	Secondary	66.43154762	0.015053089
709	WELD	Secondary	66.43154762	0.015053089
710	WELD	Secondary	66.43154762	0.015053089
711	WELD	Secondary	66.43154762	0.015053089
712	WELD	Secondary	66.43154762	0.015053089
713	WELD	Secondary	66.43154762	0.015053089
714	WELD	Secondary	66.43154762	0.015053089

	715	WELD	Secondary	66.43154762
0.015053089				
716	WELD	Secondary	66.43154762	0.015053089
717	WELD	Secondary	66.43154762	0.015053089
718	WELD	Secondary	66.43154762	0.015053089
719	WELD	Secondary	66.43154762	0.015053089
720	WELD	Secondary	66.43154762	0.015053089
721	WELD	Secondary	66.43154762	0.015053089
722	WELD	Secondary	66.43154762	0.015053089
723	WELD	Secondary	66.43154762	0.015053089
724	WELD	Secondary	66.43154762	0.015053089
725	WELD	Secondary	66.43154762	0.015053089
726	WELD	Secondary	66.43154762	0.015053089
727	WELD	Secondary	66.43154762	0.015053089
728	WELD	Secondary	66.43154762	0.015053089
729	WELD	Local	1195.767857	0.000836283
730	WELD	Local	1195.767857	0.000836283
731	WELD	Local	1195.767857	0.000836283
732	WELD	Local	1195.767857	0.000836283
733	WELD	Local	1195.767857	0.000836283
734	WELD	Local	1195.767857	0.000836283
735	WELD	Local	1195.767857	0.000836283
736	WELD	Local	1195.767857	0.000836283
737	WELD	Local	1195.767857	0.000836283
738	WELD	Local	1195.767857	0.000836283
739	WELD	Local	1195.767857	0.000836283
740	WELD	Local	1195.767857	0.000836283
741	WELD	Local	1195.767857	0.000836283
742	WELD	Local	1195.767857	0.000836283
743	WELD	Local	1195.767857	0.000836283
744	WELD	Local	1195.767857	0.000836283
7				
7				

Appendix 5

Training Syllabus

Welcome and distribution of equipment
Survey overview
Data collection techniques
Definitions of belt/booster seat use, passenger vehicles
Observation protocol
Weekday/weekend/rush hour/non-rush hour
Weather conditions
Duration at each site
Scheduling and rescheduling
Site Assignment Sheet
Daylight
Temporary impediments such as weather
Permanent impediments at data collection sites
Site locations
Locating assigned sites
Interstate ramps and surface streets
Direction of travel/number of observed lanes
Non-intersection requirement
Alternate site selection
Data collection forms
Cover sheet
Recording observations
Recording alternate site information
Assembling forms for shipment
Safety and security
Timesheet and expense reports
Field practice at ramps and surface streets

Appendix 6
Colorado Average Motor Vehicle Crash-Related Fatalities by County 2015-2019

FARS (2015-2019) State=Colorado				
State	County	$\begin{aligned} & \text { Average } \\ & \text { fataily } \\ & \text { counts for } \\ & 5 \text { vears } \end{aligned}$	Fatality within the state	Cumulative fatality percentage
Colorado	WELD	45.2	12	12
Colorado	EL PASO	39.8	10.5	22.5
Colorado	ADAMS	31.8	8.4	30.9
Colorado	ARAPAHOE	23.8	6.3	37.2
Colorado	JEFFERSON	22.8	6	43.3
Colorado	DENVER	22.2	5.9	49.1
Colorado	LARIMER	20.2	5.3	54.5
Colorado	PUEBLO	15.8	4.2	58.7
Colorado	BOULDER	14.2	3.8	62.4
Colorado	MESA	9.8	2.6	65
Colorado	DOUGLAS	9.6	2.5	67.5
Colorado	GARFIELD	7.8	2.1	69.6
Colorado	LA PLATA	6.6	1.7	71.4
Colorado	FREMONT	6.4	1.7	73.1
Colorado	MORGAN	5.2	1.4	74.4
Colorado	LOGAN	5	1.3	75.8
Colorado	MONTROSE	5	1.3	77.1
Colorado	EAGLE	4	1.1	78.1
Colorado	LAS ANIMAS	3.8	1	79.1
Colorado	PARK	3.6	1	80.1
Colorado	GRAND	3.4	0.9	81
Colorado	OTERO	3.4	0.9	81.9
Colorado	COSTILLA	3.2	0.8	82.7
Colorado	CHAFFEE	3	0.8	83.5
Colorado	DELTA	3	0.8	84.3
Colorado	MONTEZUMA	3	0.8	85.1
Colorado	ELBERT	2.8	0.7	85.9
Colorado	ROUTT	2.8	0.7	86.6
Colorado	SAGUACHE	2.8	0.7	87.3
Colorado	SUMMIT	2.8	0.7	88.1
Colorado	TELLER	2.8	0.7	88.8
Colorado	ALAMOSA	2.6	0.7	89.5
Colorado	KIT CARSON	2.6	0.7	90.2
Colorado	WASHINGTON	2.6	0.7	90.9
Colorado	RIO GRANDE	2.4	0.6	91.5
Colorado	HUERFANO	2.2	0.6	92.1
Colorado	YUMA	2.2	0.6	92.7

Colorado	BACA	1.8	0.5	93.2
Colorado	GUNNISON	1.8	0.5	93.6
Colorado	LINCOLN	1.8	0.5	94.1
Colorado	MOFFAT	1.8	0.5	94.6
Colorado	OURAY	1.8	0.5	95.1
Colorado	ARCHULETA	1.6	0.4	95.5
	CLEAR			
Colorado	CREEK	1.6	0.4	95.9
Colorado	PROWERS	1.6	0.4	96.3
Colorado	BROOMFIELD	1.4	0.4	96.7
Colorado	JACKSON	1.2	0.3	97
Colorado	SEDGWICK	1.2	0.3	97.4
Colorado	BENT	1	0.3	97.6
Colorado	PITKIN	1	0.3	97.9
Colorado	RIO BLANCO	1	0.3	98.1
Colorado	SAN MIGUEL	1	0.3	98.4
Colorado	CROWLEY	0.8	0.2	98.6
Colorado	CUSTER	0.8	0.2	98.8
Colorado	DOLORES	0.6	0.2	99
Colorado	GILPIN	0.6	0.2	99.2
Colorado	KIOWA	0.6	0.2	99.3
Colorado	LAKE	0.6	0.2	99.5
Colorado	MINERAL	0.6	0.2	99.6
Colorado	PHILLIPS	0.4	0.1	99.7
Colorado	SAN JUAN	0.4	0.1	99.8
Colorado	CHEYENNE	0.2	0.1	99.9
Colorado	CONEJOS	0.2	0.1	99.9
Colorado	HINSDALE	0.2	0.1	100
Colorado	UNKNOWN	0	0	100

Appendix 7

Codes for Road Segment File

S1100	Primary Road	Primary roads are generally divided, limited-access highways within the interstate highway system or under state management, and are distinguished by the presence of interchanges. These highways are accessible by ramps and may include some toll highways.
S1200	Secondary Road	Secondary roads are main arteries, usually in the U.S. Highway, State Highway or County Highway system. These roads have one or more lanes of traffic in each direction, may or may not be divided, and usually have at-grade intersections with many other roads and driveways. They often have both a local name and a route number.
S1400	Local Neighborhood Road, Rural Road, City Street	These are generally paved non-arterial streets, roads, or byways that usually have a single lane of traffic in each direction. Roads in this feature class may be privately or publicly maintained. Scenic park roads would be included in this feature class, as would (depending on the region of the country) some unpaved roads.

